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By W. E. Moeckel and J. C. Evvard

SUMMARY

A method is presented for determining the load distribution due
to steady roll and pitch for thin flat-plate wings whose plan form
ls arbltrary except that a part of the leading edge must be supersonic.

For wings with straight supersonlic leading edges, the load
digtributions due to angle of attack, steady roll, and steady pitch
are oxplicitly evaluated andi are computed for a fanlly of wings whose -
plan form includes most types of flow reglon commonly encountered.
Theae computatlons showed that negative 1lift exlisted toward the rear
of polnted wings whose agpeot ratio was amall. In steady roll,
negative loading occurred in regions influenced by the edge of the
plan form at the opposite slde of the roll axis. When the pitch
axis was loocated near the semichord position, the load gradlent for
steady pltch was approximately in the chordwise direction, except
in regions influenced by subsonic tralling edges. High positive
loading occurred toward the front of the wing and high negative
loading toward the rear.

-

INTRODUCTION

A method is presented in reference 1 for determining the pressure
distribution over thin wings at supersonic speeds. The method 1s
based on an integration of the local source strength (which is
proportional to the local slope of the wing surface) over the regions
of the disturbed flow field that lie within the forward Mach come
from a point on the wing surface. Reference 1 shows that the
contributions to the pressure coefficient of the disturbed fields
off the surfece of the wing may be replaced by equlvalent contribu-
tions of parts of the wing surface, and that some of the surface
integrals that are involved in the determination of pressure coeffi-
clent may be reduced to line integrals.

The reduction of surface integrals to line integrals is feasible
for all regions of a flat-plate wing except those influenced by
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interacting dlgturbed flow fields off the wing plan boundary. For
the wing shown in figure 1, for example, all regions may be treated
by the methods of reference 1 except the small shaded regions at the
rear. The restriction that a portion of the leading edge must be
swept ahead of the Mach lines from the foremost point of the wing
thus guarantees that some portions of the wing will be subject to
the methods of reference 1. For reglons influenced by interacting
disturbed flow fields, more elaborate methods are required, such as
those used for delta wings in reference 2.

The load distributions due to r0ll and pitch have been detsrmined
for same plan forms with straight edges in references 3 and 4. The
methods of reference 1 are applied herein to the determination of
these load distributions for more general classes of plan form, whose
edges may be ourved. For a family of wings of the type shown in
figure 1, but having, for convenience, straight supersonic leading
edges, the load distributions due to angle of attack, steady roll,
and steady pltch were computed. This type of wing was chosen
because 1t contains most types of flow field commonly encountered.

This analysis was campleted at the NACA Cleveland leboratory
during January 1948,
SIMBOLS

The followling symbols, some of which are illustrated in fig-
ure 2 to 6, are used throughout this report:

A: B, cl:
substitution terms .

Cg 9 * ¢ oy clo

a8, 8% b, . yntegration limits

bf, o, of ere

cp pressure coefflolent

k . slope of straight leading edge in (u,v) coordinate

system
M Mach number
D steady rate of roll, radlans per second

q gsteady rate of pitch, radians per second
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8
8y .

u, v
Uy Vyr
Ua, Vg

3 (v), vy (u),
71(x)

w(v), vplu),
¥o(x)

uz(v), vz(u),
y3(x)

ug(v), vg(u),
¥4(x)

v

X, ¥

g)‘l

area or area integration

area on wing surrace

free-stream velooity (in x-direction)

variables of integration in cobligue coordinates
oblique coordinates of point on wing surface
obligue coordinates of wing vertex

funoctions defining form of right supersonic leading
edge

functions defining form of left supersonic leading
edge

functions defining form of right subsonio leading
and trailing edges

functions defining form of left subsonic lealing
and tralling edges

‘compounent of perturbation velocity in z-direction

(positive ocutward from z = O plane)
Cartesian coordinates of point on wing surface
variables of integration in Cartesian coordinates
coordinate of roll axis
coordinate of pitch aris
angle of attack

M2 -1

w/U for top and bottom wing surface, i'espectively,
in y = constant plane
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ANALYSIS )

A plan form that contains most types of wing region commonly 9
encountered 1s shown in figure 1. The downstream Mach lines from «
the vertex and from the junotures of the subsonic and supersonic
sections of the leading edges divide the plan form into nine types of
region that differ in the type and number of wing edges that affect
the pressure distribution. Reglons I and IT are influenced only by
supersonic leading edges, whereas regions IIT, IV, and V are affected
also by one subsonlc leading or trailing edge. In regions VI, VII,
and VIIT, the subsonic edges of both sides of the wing affect the
flow. The shaded areas represent regions that are affected by
interacting perturbed fields off the wing plan form and are not
eaglly treated by the methods of reference 1.

The essential equations required to determine the load distribu-~
tion for the type of wing shown in figure 1 (without the shaded
regions) may be obtained fram a consideration of regions of types III,
IV, and Y. For these types of region (influenced by supersonic
leading edges and only cne subsonic leading or trailing edge), an
oxpression was derived in reference 1 for the pressure coefficlent .
at a point (x,y) when that point is not influenced by vorticity off
the wing plan-form boundary. This expression is (see fig. 2):

Cc, =2 %qrf aten 2 -a-(-g’{f'-ml akan
"n e + & -
b M(x'g)z - BZ(Y"‘I)Z x 2”(1—5)2 - BZ(y_n)Z
ol 8y,2
r\
2 Opdn 2 (0 +0mp) an
+= I + 2 .
" __ N=-9% - gE(yn)? x _ 2 M(::-g)2 - pe(y-n)2
~ab 56d
~
B(SL) (ap - op) an
+3 (dx)‘s‘ (@)
e [1+ B(%)J Id(x_g)z - #3(y-n)?
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where (ﬁ) is the derivative of the equation defining the plan
3

form of the subsonic leading and trailing edges evaluated at the
intersection of the right forward Mach line from (x,y) and the wing
boundary (point d). Eguation (1) was shown in referemce 1 to contain
an additional term of a form similar to the line integral along the
Mach line bd. This additional line integral is related to the
vorticity behind the tralling edge and is therefore zero for lealing
edges. For tralling edges, the nature of the line integral depends
on the conditions imposed. In particular, if the Entta-Joukowski
condition is imposed, the additional line integral must be such that
it exactly cancels the integral along the Mach line bd. Henmocs, .
equation (1), without the last integral, can be used to determine the
pressure cosfficient in regions influenced by vorticity off the plan
form provided that the Kutta-Joukowekl condition 1s imposed at
subsonic trailing edges. The imposition of this condition, although
arbitrary, is oomventional and will be assumed in the rest of the
analysis.

For a flat-plate wing, the effective local slopes Op and Orp

for determining the loading due to angle of attack, steady roll, and
steady pitoh, are

OT--G =

> (2)
O’:B = |

op=-F=-& @ -n) (2a)

O'B-%(Il"lo) -~

GT--%.-%(g-EO)

" (2v)

og =3 (£-to) ]

vhere p and q are the rates of roll and pitch, respectively, in
raiians per second, and np and £, are the distances from the
origin of coordinates to the roll axis and the pltch axis,
respectively. From equations (1) to (2b) the first, second, and
fourth integrals of equation (1) 'are seen to vanish for the pressure
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coefficient due to angle of attack and roll, whereas the second and
fourth integrals venlish for the pressure coefficient due to pitch.

It is convenlent to convert the required integrals to an oblique
coordinate system whose axes are the rearward Mach lines from the
origin. The origin of the coordinates is taken at the Jjuncture of
the supersonic and subsonic parts of the leading edge. The conversion
equations are (fig. 3)

u = g5t - pn) v = 35(E + pn)
£=S(v +u) N =&(v - u)
u, = %i,;(x - By) vy = 25(x + By)
x = B(v, + vg) Ay LTS (3)

The elementary area in this coordinate system is %E dudv. The

coordinates (uw, vw) or (x,y) are used to represent the point

on the wing for which the pressure coefficlent 1s desired, whereas
(u,v) or (&,n) represent variables of integration. In the obligue
coordinate system, the equations for the load distributions due to
angle of attack, roll, and pitch become, respectively, (fig. 4)

V. b
1'% " dv-d
Z«ECP - . % dv av - _’z; v-du (4)
bt 4, Uy-Uz Vg~V M(uw-u) (vy=v)
b a

(1'-%:2) ~ (v-uz-Mglav -

2
Y T o=

2 P (v-u-Mng) (dv-du)

(42)
o Noon)(wev) -

eLe
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| e v+u3-& v
2B, - - mgo %__ ) i\ v::)

(v-w. - %ﬁo) (;i.v-du)
) mﬁo[

N Cuyu) (v-v)

- 282 ﬂ Julv (4b)
0 8,1 (2 (my-v)

where u? and its derivatives are evaluated for v = Ve Equa-

tions (4), (4a), and (4b) can be integrated for arbitrary forms
of “S(Vw if u and v are linearly related along-the line ab.

In other words, if the supersonic part of the leading edge is a
straight line, explioclt expressions for the load distribution are
readily obtainable for arbitrary forms of the subsonic leading and
trailing edges. If the supersonic leading edge is not a straight
line, the load distributions due to angle of attack and roll may
still be obtained dy means of a simple graphical integration along
the required part ab of the leading edge. The treatment of such
wings to determine the lift distribution is described in detail in
reference 5. This method may be readlly extended to determine the
line integrals along ab for load distribution due to roll and pitch.
The area integral regquired for the pitch loading (eguation (4b)),
although somewhat more difficult to evaluate than the line mtegrals, .
is also subject to stripwise, graphical :l.ntegra.t:!.on moethods.

The integrations from b to v, in equations(4) to (4b)

(along the Mach line wu = uz(v,)) are independent of the form of
the wing boundary and hence may always be explicitly integrated.
If the Kutta-Joukowski condition is imposed at the tralling edge,
these integrals need be evaluated only when the right forward Mach
line from (“w’vw) intersects the plan-form boundary at a subsonic
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du
leading edge (0<T$<1 . If the right forward Mach line inter-

d
sects the plan-form boundary at a subsonic trailing edge (71?'> ])
the integrals along u = uz(vw,) vanish.

The analysis may now be extended to regions of the wing
influenced by all its subsonic leading and trailing edges. In gemeral,
such regions may be of two types (figs. 5(a) and 5(b)). In both types
of region, the left forward Mach line from (uy,vy) intersects a
subsonic leading or tralling edge at the opposite side of the wing.

In figure 5(a), (u,,v,) lles in a region of type VI (fig. 1), for
vhich the reflections of the forward Mach lines at the wing boundaries
do not intersect on the wing surface. In figure 5(b), (u,,v,) 1lles
in a region of type VIII, for which the reflections of the forward
Mach lines cross on the wing surface. For both types of region, the
methods of reference 1 indicate that an additional line integral
along the Mach line v = vg(u,) must be added to equation (4). These
integrals are the same as those alang u = uz(vy), exocept that v
replaces u, and v, replaces uz. The semse of the integration is
again from the supersonic leading edge vy or vz %o the subsonloc
edge v4. The integration along v = v4, 1llke that along u = uz,
vanishes (for solutions that satisfy the Kutta-Joukowski condition)

1f the forward Mach line fram (u,v,) intersects a subsonic trailling

edge (as it does, for example, in fig. 5(b)).

Along the supersonic leading edge, the sense of the integration
is from & to Db__for both types of region. The values of the line
integrals aleng ab are thus of opposite sign for figures 5(a) and 5(b).

The area integrations for the pitch loading (eq_ua.tion (4c)) extend
over the shaded areas of figures 5(a) and 5(b). For the type of
region shown in figure 5(b), the area integration consists of two
parts. ‘The integration over the downstream area is independemt of
the form of the supersonic leading edge. The integration over the
upstream area depends on the contour of the supersonic leading edge.
This integration is subtracted from the integration for the lower area,
becanse two area cancelations are involved, cne for each of the reg:lc:ns
. off the two subscnic leading edges (referemce 1).

For reglcns of type VII (fig. 1), both right emd left reflected
Mach lines intersect the plan-form boundary along the same supersomic
leading edge. A point in this region is like a point in region VIII
if the Mach lines cross on the surface and is like & point in
region VI if the Mach lines do not cross.



NACA TN No. 1689 9

For reglons of types I and II, both forward Mach lines intersect
the plan-form boundary at supersonic leading edges. Hence, all of
the line integrals except that along the supersonic leading edge
vanish, and the limits for this integral are the points of intersec-
tion of the forward Mach lines with the leading edge. The area
Integration for the pltch loading extends over the regiom bounded
by the forward Mach lines and the leading edge.

APPLICATION TO WINGS WITE STRAIGHT

SUPERSONIC LEADING EDGES

When the wing is symmetrical and a section of the leading edge
on both sides of the line of symmetry is straight end swept ahead

" of the Mach lines from the vertex, the equations for the supersanic

M"0 v
leading edges are uy = - kv and up = T(l'k-) - x° The origin of
cooxrdinates is taken at the Juncture of the supersonic and subsonic
leading edges (fig. 6). The axis of symetry is identified with the
roll axis. For a general region on such a wing, line integrals are
required along the Mach lines reflected from the subsonic leading
edges and along the two sections of the supersonic leading edge.
The limits for these line integrals, as well as those for the area
integration required for pitch loading, vary with the type of region
congsidered. The presentation is simplified if the expressions for
a general region are first evaluated and the appropriate limits for
each region are then indicated.

In the following expressions for the load distributions due to
angle of attack, steady roll, and steady pitch, respectively, the
first integral is the line integral along v = vy(u), the second is
the integral along u = uz(v), the third is a.long u = uy(v), and
the fourth is along u = up(v):

d74 uw
1-3 a T v av
PYCA o
YuVs M Uy—2 W“w'“s : Mvw-v
a Cc

b
- (14k) du

1+k
J W Uy=) (vw-i-) at M(uw-u) [Vw'*'ku‘mlo(l-k)]
' (s)
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(vg-u-Mng)au

<mo) ),

-— " igangr " (o
k o
u,-uz Vv o Maru) (vwb‘i’:)
Db
. (14%) [u(1+k) + KMnglau (58)

Lo Nlogmw) [vyimamo (1-1)]

"MEO - i 1 - roR (vpu-_sgo)du
- 2B ‘lﬁo Vw"'74 uw_u
a
du. w M 1-k M
. 1- g2 (v+us - Flolav . 1;1: ( 50)“
Nowus I N ()

- (1) ) (5)

v u,-u) [vw+ku-mo(l-k)]

a'
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s = J.J‘ 7 dudv
s, N (v=u) (wg=¥)

-1s the integration over the required areas for each region.

where

From these integrals, the following explicit expressions are
obtained for the load distributions due to angle of attack, steady
roll, and steady pitch, respectively:

4 dvy U8 duz Vy~¢'
Z'E.CP = % [G‘ - du) Vo va | é‘ - dv) ‘\‘ “w'uSJ

c [ b
4 ik -1 H’“w'“ ban L k(uy-u) ]
TTE Em kv""u]b' ' [ '\""’*k“'mo(l'k) al

(8)




T 4 g _&_ d74 “w'a' .
ot [1-e1om)
2 ¢! duz A’VW""
-(37,,-113 +?"M'lo) G'- dv) u'-u;g]

B

'hl

]

. ﬁan'a 575 [m-l I\%‘-%Jb' [(1+k)(tg,—kv,,) + znm(,:]

2 14k |, - k(ny-u)
By 372 {}"m : '\’v,m-mo(l-k;l [mk) (mymry) + (146 mO] (e
N a' .

€L6

669T *ON ML VOVN
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4 dvg) {u,-a
ﬂg;[(s“v”“ *0)("5);"—‘%

' d -o'
1]
NN Ir [ T ] M(u.,-u) - +h1""10(1'k)]J }

c
28 34k [ o [0
20 [ | [ i

28 14k [ . ke(uy~u)
- ESE 7l ' vaku-m(l'ﬂ:’ [( ) )

+ (1-12) Mo - 21%‘0,] = ﬁ; 8 _ ' (en)

689T "ON NI vOuN
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The eppropriate 1limits for each of the elght regions shown in
figure 6 are given in the following table:

Wing regions (fig. 6)

Limit
I |m |mI| v v | W vII VIII
M
a Wy | Wy u, u, Wy To(l-k)+ —(1-k) + ~kvy
V4 V4
"X "
My
a' oy |wy | u | w u, -To-(l-k)-l- h.ﬂkg(]_-k)+ ug
'V'4 74
3 ¥
bony |Wg | W Yy uz Ya uz uz
b' |uy ¥ | By | YU uz % Uz “kvy
o |-kv,|-kvy| uz uz uz uz sy LF]
o' | vl % fus/k|-uz/k|-kug + -ug/k -kuz + [|-kug +
Mo (1-k) Mn(1-k) | Mng(1-k)

An examination of eguations (6) to (6b) shows that the arc-tangent

factors are the same for each type of load distribution.

The sguare-

root terms are also the same for the roll and pltoh loadings.
Application of the foregoing table to equations (6) to (6b) shows
that many terms vanish for sqme of the wing regions because the upper
and lower limits are identical. The location of these limits for
reglions of types VI and VIII are shown in figure 5.

The expressions for S8 Iin each reglom are:

973
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Reglon Area integration, S
.S
I 3 A
x
TII [2C5 + AC,
V |2Cg + BCg
VI [2(C; + C5) + A(Cy - C;) +B(C, - Cg)
VIII {2(Cg + Cy) + A(C; - Cg) + B(Cq - Cy)
.where
A= ﬁ (v, + kv,) Cg = Iq(uv-us) [, kM g (1-k)]
B = 2 [ v, M 5 (1-k)] Cn = tan™t | k(u-us)
NE w0 6 Vytkuz Mg (1-k)

- -1 A WwUd
Cy = tan ‘d k(vg-vg) Cy = V E‘w*%')‘%g(l'k)] (vg=va)

\ 'k(uw-ud) | kug4vg-Mng (1-k)
-1 -1
Co = tan W Ce = tan Vs

| uz - Uyrtkvy
% ’\( (vy-ug) (v +) Cg = ten™ | go—y

- n’“w‘“s |
04 = tan 1 kvw +us 010 = M (%4'1!74) (Vw-74)
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Equetions (6) to (6b) have been used to calculate the load
distributions due to 1ift, roll, and pitch for the wing shown in

figure 7. For ccmputation, use of the coordinates “w/M"lol
and Vw/HI"lOI rather than uy,v, was convenient. These coordinates
make equations 6 to 6(b) nondimensional. , I

. Bing

For the wing shown in figure 7,. the ratio —g—o— was taken

equel to 1.0. The value of kK is 1/3. The equations for the
subsonic edges were assumed to be

u.3 @ v 3
cn—— g 4
M|no] |'1ol-)

. .
. 4(% - 1) (7)
¥|no] I'lol

In order to satisfy the Kutta-Joukowski condition, the integral

along u = uz 1is zero for vw/(Mlnol) > 12'1/2; and the integral

along v = vy 1s zero for u‘;/(MIq(,') >1+ 12'1/2, because

av and o are then greater than unity.

The contour of the wing is represented in figure 7 for a Mach
number of N2, although in the (u,v) coordinate system the plot
represents a series of wings whose spatial contours vary with Mach
number according to equations (7) and the value k = 1/3. Hence
the load distributions calculated for this wing apply directly to,
all wings of the series defined by k = 1/3' and equations (7). The
loaed distributions for a considerable variety of plan forms, at a
given Mach number, can be obtained from the load distributions
caloulated for the wing of figure 7 by terminating the wing with any
Porm of supersonic trailing edge. The load distributions for the
remaining regions of the wing are unaffected by such changes.

The effect of altering the location of the roll or pitch axes
can be determined with the aid of the superposition principle. If
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the roll and pitch axes are shifted to N, and 3 1» Trespectively,
then equations (2a) and (2b) become, for roll,

op = - £-ng) - Bnyeny)

0p = E(n-ng) + E(ng-ny) ()

and, for piteh,

op = - HE-£) - $to-ty)

op = 3(t-fy) + Fto-ty) (sa)

Because I%(110-111) and %(Eo-ﬁl) are constants, the contributiocns

to the load distributions due.to these terms are exactly equivalent
to the load distributions due to the corresponding angles of attack.
Thus, if the load distributions are computed for the axes 1

and ﬁo (or for some relation such as Blnol/ﬁo =1, as assumed

for the wing of fig. 7), the load distributions for roll or pitch
about any other axes are simply the load distributions for the
axes 7, end £y plus the 1ift distributions for the angles of

attack:

a=% %(ﬂo-"ll)

a=%3Ex-t)

For a family of wings whose contour is represented by the
value Xk = 1/3, and equation (7), the load distributions due to
angle of attack, steady roll, and steady pitch are shown in fig-
ures 8, 9, and 10, respectively. The dashed lines in these figures
are Mach lines that separate the various regions indicated in-

figure 7. The additional Mach lines at u,/(M|ng|) = 1.29 and
at vw/ (Mlnol) = 0.29 separate the reglons influenced by the subsonic
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trailing edges from those influenced only by leading edges. The pres-
sure coefficient is zero along the subsonic trailing edge for each
type of loading, because the Kutta-Joukowski condition was imposed

in each case., Along each subsonic leading edge the pressure coeffi-
cient is iInfinite.

The 1ift distribution shows that positive lift exists on all
parts of the wing surface except the extreme rearward tip (region VIII
and part of region VII). This negative region is a result of the
upwash over the subsonic edges. ‘The lift decreases rapidly toward
the subsonic edges. The region of the wing having the highest 1ift
is that bounded by the leading edges and by the Mach lines from the
beginning of the tralling edges.

For steady roll (fig. 9), the loading 1s negative in the outboard
part of region IV and in nearly all of regions V, VI, and VII. In
region VIII, the loading agaln becomes positive. The large negeative
region results because the greatest contribution to the loading
proceeds from the leading edge on the opposite side of the wing,
where the vertical component of the perturbation velocity is of
opposite sign. ’

The load gradient for steady pitch (£ig. 10) is primarily in
the chordwise direction, except in the regions influenced largely by
subsonic trailing edges. High positive loading occurs toward the
front of the wing and high negative loading toward the rear. The
loading becames negative ahead of the pitch axls becanse the contribu-
tion due to the area integration and the contribution due to the line
integrals are of opposite sign ahead of the pitch axis (Eq > E). Tne
loading therefore changes sign when the contribution of the integrals
over the area included in the forward Mach cone is sufficlently
large to overbalance the contribution due to the line integrals.

SUMMARY OF THEORY AND RESULTS

A method has been presented for determining the load distribution
due to steady roll and steady pitch on thin wings whose plan form is
arbitrary except that a part of the leading edge must be supersonic.
When the supersonic part of the leading edge is a straight line,
these load distributions can be explicitly evaluated for all reglons
of the wing except those influenced by interacting flow fields off
the plan form.

For a particular family of wings having a plan form that
inoludes most types of flow field commonly encountered, the load
distributions due to angle of attack, steady roll, and steady pltch
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wore computed. The 1ift distribution for this family of wings
showed that negative 1ift may exist toward the rear of pointed
wings if the aspect ratio is small. The highest 1lift ocourred in
regions affected only by leading edges. In steady roll, negative
loading occurred in reglons influenced by the edge of the plan form
at the opposite side of the roll axis. At the extreme réar of a
low-aspect-ratio wing, the loading again became positive. With the
pltch axis located near the semichord position, the load gradiemt
for steady pitch was primarily in the chordwise direction except

in regions influenced by subsonic trailing edges. High positive
loading occurred toward the front of the wing and high negative
loading toward the rear.

Flight Propulsion Research I.a.boratory,
National Advisory Committee for Aeronsutics ’
Cleveland, Ohio, May 15, 1948.
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Supersonic
leading
I edges

Subsonic

\leadin edges /
AN

/
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Figure 2. - Illustration of geometric significance of equation (1).
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Figure 4. — Illustration of geometric significance of equations (4).
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Figure 6., -~ Geometric parameters for symmetrical wing with straight
supersonlc leading edges and arbitrary subsonic leading and trail-
ing edges.
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